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The effect of radial diffusion on the polarization of porous flow-through electrodes has been investi- 
gated with the aid of a mathematical model. The proposed model takes into consideration the rates of 
mass transfer in the axial direction by convection and in the radial direction by diffusion as well as 
charge transport in the pore electrolyte and electron transfer kinetics at the electrode-electrolyte 
interface. Normalization of the variables gave rise to dimensionless groups pertinent to the kinetic, 
ohmic and radial diffusion effects. These are respectively, I the reversibility index, A the parameter 
of ohmic effect and ~ the parameter of radial diffusion. The latter (ff = 24)/Sh) is the ratio of  two 
other dimensionless groups. With this formulation, larger values of ff correspond to more predominant 
control of the electrode behaviour by radial diffusion. The same is also true for the parameter of ohmic 
effect A. Solutions have been obtained for two limiting cases: negligible and signifcant potential drop 
in the pore electrolyte. In both cases, equations have been derived which give the quantitative (highly 
non-linear) effect of ff on the current-polarization relations. In the case of a significant ohmic potential 
drop in the pore electrolyte, it was found that the controlling parameter is the product A~. The two 
variables seem to give a synergistic effect since, at large A values a certain change in ~ has a more 
pronounced effect on the polarization than the corresponding change at lower A values. Qualitative 
and quantitative tests of some aspects of  the model are reported using the electrochemical reduction 
of copper ions from acid copper sulphate solutions at a packed bed of copper particles. Satisfactory 
agreement was obtained. 
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Rm(x) 
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RT /F  (V) = 25.6 mV at 25 ~ C i0 
Feed reactant concentration, (mol cm -3) 
Reactant concentration at the electrode I 
surface 
Reactant concentration at the median k 
of the pore L 
Reactant concentrations at the wall of Pe 
the pore q 
Equivalent pore diameter (cm), Equation R 
1 Re 
Diffusion coefficient of reactant (cm 2 S 
S -1 ) 

Normalized current density at distance X Sh 
Maximum obtainable limiting current, V 
(A cm -2) Equation 10a x 
Total normalized current density result- a 
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ing from the electrode (see Equations 
15, 20 and 21) 
Exchange current density based on feed 
concentration, R b 
Normalized exchange current density, 
ioSL/ir~ 
Mass transfer coefficient (cm s -1) 
Electrode thickness (cm) 
Peclet number, Pe = V/SD 
Tortuosity factor, dimensionless 
Equivalent pore radius (cm) 
Reynolds number Re = V/St~ 
Specific surface area of the porous 
medium (cm -1) 
Sherwood number Kd/D 
Superficial flow speed (cm s -1) 
Distance, see Fig. 1 
Transfer coefficient 
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0 

P 
A 

Pfree 
Pelf 

Polarization at distance x 
Porosity 
Dimensionless group, see Equation 7b 
Kinematic viscosity (cm 2 s -1) 
Parameter of ohmic effect, Equation 11 
Parameter of radial diffusion, Equation 7b 
Bulk electrolyte resistivity (ohm cm) 
Effective electrolyte resistivity, Pe• = 
pfreeq/O (ohm cm) 

1. Introduction 

Porous flow-through electrodes are currently 
attracting considerable attention. They have been 
suggested for use in a variety of applications, e.g., 
in removing cyanide and heavy metal ions from 
industrial waste water streams and in electrically 
rechargeable redox batteries for load4evelling 
applications. Adequate listing of relevant 
references are available elsewhere [1,2].  Such 
electrodes consist of porous beds of highly inter- 
connected pores, the internal surfaces of which 
have a complicated geometry. The behaviour of 
these electrodes depends critically on the mech- 
anism and rate of both mass transfer through the 
electrolyte-filled pores and electron transfer 
across the electrolyte-electrode interface. An 
understanding of the behaviour of this electrode 
system requires a knowledge of the distribution 
of current, concentration and potential within 
the porous electrode. This, in turn, requires 
simultaneous solution of the differential equations 
of three-dimensional mass and charge transport 
through the pore electrolyte. The electron transfer 
reaction takes place at the pore surface; its rate 
depends on the local reactant concentration (at 
the pore surface) which in turn depends on the 
rate of diffusion in the radial direction of the 
pore. The equations of this type become rather 
cumbersome and invariably require numerical 
solutions. There have been some simplifying 
approaches which led to calculations of the 
distribution of current, concentration and 
potential within the electrode. Some authors 
have presented one-dimensional models [3-8] 
where variations in concentration, current and 
potential were calculated in the axial direction, 
assuming the corresponding variations in the 
radial direction to be negligible. Alternatively, 
several other authors [1,2, 9-12] have 

presented modified one-dimensional models 
where basically a one-dimensional model has 
been postulated and the mass transfer in the 
radial direction accounted for by adding an 
extra transport equation in the radial direction. 

In a previous report [2], we have defined the 
conditions under which concentration variations 
in the radial direction become negligible and truly 
one-dimensional transport prevails. The criterion 
for this condition is 

I~ exp (ar~) ~ 1 

where the variables are dimensionless (see below). 
In all the above models, potential variations were 
calculated only in the axial direction. 

Slow radial diffusion has two related effects 
on the behaviour of porous flow-through elec- 
trodes. It causes the reactant concentration at 
the pore wall, Rw(X), to be less than that at the 
centre of the pore, Rm(x ). The difference between 
Rm(X ) and Rw(X ) determines the extent of radial 
diffusion control and the magnitude of concen- 
tration polarization. Furthermore, it may limit 
the conversion (or collection) efficiency of the 
electrode. The latter is defined as the relative 
decrease in reactant concentration when the 
electrolyte is passed once through the electrode 
under conditions of limiting current, i.e., when 
Rw(X ) is kept at zero. This effect had been treated 
in detail before [2]. 

The purpose of this paper is to evaluate the 
effect of radial diffusion on the current-polarization 
relations of porous flow-through electrodes. 
Specifically to develop and solve the equations 
which show the effects of the structural, transport 
and kinetic parameters of the electrode-electrolyte 
system on the current-polarization relations. This 
is given below in the form of analytical solutions, 
which extend over the entire range of currents. 
It is noteworthy that previous related models were 
solved numerically and the results confined to the 
limiting current. Analytical solutions for this 
system were obtained before only for fast 
(reversible) reaction kinetics [7, 9, 11 ] where 
activation polarization was assumed negligible. 

2. Model, equations and solutions 

The porous electrode is assumed to be a uniform 
highly interconnected porous matrix of good 
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electrical conductivity. The specific surface area 
of  this matrix is S in units of  cm -1 (cm2/cm3). 
The equivalent pore diameter of  this matrix is 
related to the porosity and the specific surface 
area by [2, 13] : 

d = 40/S. (1) 

The electrolyte concentration is assumed to be 
high so that mass transfer of  the electroactive 
species by ionic migration is negligible. 

A porous flow-through electrode can operate 
in three different modes [1], counter, parallel 
and perpendicular flow where current and elec- 
trolyte flow directions are respectively, opposite, 
similar and perpendicular. We treat below the case 
of  counter flow. The corresponding treatment for 
parallel flow is quite similar; the main difference is 
hq the boundary conditions [8]. The case of  
perpendicular flow is considerably more complex. 

Let us assume a simple one-electron transfer 
reaction, 

R - + P + e .  (2) 

The rate of  this reaction is given by the Tafel 
equation modified by the concentration effect. 
Thus 

i = io(Rs/Rb) exp (aT/b). (3) 

Where i is the current per cm 2 of  true surface 
area, io is the exchange current density based 
on bulk reactant concentration R b ; R  s is the 
reactant concentration at the electrode surface, 
a is the transfer coefficient, r/is the polarization 
and b = RT /F .  

Performing a mass balance on a volume 
element, dx, o f  unit geometrical cross-sectional 
area, Fig. 1, one obtains: 

di(x) = - -  nFVdR m (x) (4) 

Axial diffusion is assumed negligible with respect 
to axial convection [7]. This current increment 
di(x) is supported by radial diffusion, the rate of  
which per cm 2 of pore surface area is 

rate of  radial diffusion = k[Rm(x  ) --Rw(X)] 
(s) 

where k is the mass transfer coefficient in the 
radial direction in cm s -1 and is related to the 
Sherwood number (Sh) by 

k = Sh x Did. (6) 

The amount of  current generated in this volume 
element is given by: 

di(x) = nFkS [Rm(x ) --Rw(X)] dx. (7) 

The rate of  electron transfer at the pore surface 
in this volume element is given by 

di(x) = ioS(Rw(X)/Rb) exp (aT?(x)/b) dx. (8) 

The flow of current generates a polarization 
gradient in the pore electrolyte, given by 
Ohm's  law 

i(x) = (1/peff)drl(x)/dx. (9) 

The variables in the above equations are to be 
normalized, thus: )2 = X/L 

/~w(2) = Rw(x)/Rb;Rm(Y. ) = Rm(x) /Rb;  

- ~ ( ~ )  = r~(x)/b. 

The currents are to be normalized relative to the 
maximum obtainable limiting current given by 

iL = nFVR b. (10a) 

This is the limiting current obtainable when all 
the reactant is consumed in one pass, i.e., at a 
conversion efficiency of unity. Thus 

electrotyfe 
V Un s -~ 

porous 

X=O 

e[ecfrode 

I 

I 

I ctx 
x = L  

counfer e[ecfrode 

Fig. 1. Illustration of a porous 
flow-through electrode with 
counter electrolyte and 
current flow. 
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I = ioSL/iL (10b) 

[(x) = i(x)/iL. (10c) 

The normalized exchange current density I is 
frequently called the reversibility index since it 
relates the effective exchange current density 
of the electrode ioSL to the limiting current 
(see Equation 10a). If/>> 1, the system follows 
reversible electrode kinetics (7). 

Substituting these dimensionless variables in 
Equations 4, 7-9 and dropping the overbars for 
convenience, it follows that: 

di(x) = -- dRm(x ) (4a) 

di(x) = (kSL/IO [Rm(x ) --Rw(X)] dx (7a) 

di(x) = / R  w(x) exp (m?(x))dx (8a) 

i(x) = (1/A)d~?(x)/dx. (9a) 

The normalization of Equation 9 results in an 
important parameter 

A = iLLpedb .  (11) 

The parameter A is the index of ohmic effect 
[5, 7] which is the maximum possible potential 
drop in the pore electrolyte in units of b, i.e. 
it is the difference between the potentials at the 
entrance and exit faces of the electrode if all the 
reaction occurs in an infinitesimal region at the 
entrance face and the generated current travels 
through the entire thickness of the electrode. 
Its value depends on the effective resistivity of 
the pore electrolyte and thickness of the elec- 
trode as well as on the limiting current. The 
latter depends on reactant concentration and 
electrolyte flow rate, (Equation 10a). Thus A 
combines a number of important variables, a 
variation in any of which can change A without 
changing the others. 

Taking S = 40/d, d = 2R and substituting in 
Equation 7a one gets 

di(x) = (Sh/24)) [Rm(X)--  Rw(x) l  dx (7b) 

where 4) is a dimensionless group given by 

4) = VR2/2DLO 

Since 4) and Sh are dimensionless, another 
dimensionless group qJ can be defined such that 

= 24)/Sh 

Hence 

di(x) = (l/V)[Rm(X)--Rw(X)] dx (7b) 

The initial and boundary conditions are 

a t x = 0 ,  Rm(x) = 1 (12a) 

= ~7o drl(x)/dx = 0 (12b) 

at x -- 1, ~ = r/(L) (12c) 

A similar system of equations has been solved 
numerically by Alkire et al. [10] for conditions 
of limiting current and parallel flow. In this paper 
exact analytical solutions are presented for the 
counter-flow case over the entire range of current- 
polarization relations. Solutions for the parallel 
flow case can be obtained following the same 
procedure. 

3. Current-polarization relations 

3.1. Negligible ohmic potential drop in the pore 
electrolyte 

This is a limiting case which applies when there 
is no significant ohmic potential drop in the pore 
electrolyte such that the polarizations at the 
entrance and exit faces are about equal, i.e., 
7o ~- ~(x) ~ r~(L). This is obtainable for small 
values of A, i.e., for electrolytes of high con- 
ductivity, low limiting currents and/or thin elec- 
trodes. Under this condition, the behaviour of the 
electrode is governed by Equations 4b, 7a and 8a 
since the polarization is independent of  distance. 

Equation 8a is substituted in Equation 7b, the 
result is combined with Equation 4a and 
rearranged to give: 

fax f - R m ( x )  1 ~ e x p ( 7 )  
In integrating the right hand side of the above 
equation, it is assumed that r/, 4) and Sh are 
constants independent of position inside the 
electrode. The conditions for constant 7/are 
mentioned above. A constant value for Sh is 
obtainable only in 'deep beds' (cf., under 
significance of 4), Sh and ~). 

Integrating the above equation using boundary 
condition 12a and rearranging, one gets 

Iexp (at/) ] 
Rm(x) exp (13) 

1 + IV exp (a~7) xj / 
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The relation between the local current and Rm(x ) 
can be obtained by integrating Equation 4a using 
Equation 12a. Thus 

i (x)  = 1 -- R m  (x)  

I exp (a~ )  ] 
�9 X 

= 1 - - e x p  l + I ~ e x p ( a T )  J (14) 

The total current produced by the electrode is 
obtained by substituting Equation 13 in Equation 
1 4 a t x  = 1 

/exp-(ar l )  1 (15) 
i = 1 - -  exp 1 + I ~  exp (aT) ] 

Under conditions of negligible radial diffusion 
control, i.e., I~0 exp (aT) ~ 1, Equation 15 reduces 
to an equation previously derived by Austin 
et  al. [5] assuming one-dimensional transport in 
the axial direction. 

Equation 15 shows that the current depends 
on ~ , I and  o~r/rather non-linearly. Fig. 2 illustrates 
this dependence for I = 0.1 and different values 
of onT. At the same level of polarization, an 
increase in ~ decreases the dimensionless current 
exponentially. 

The increase in ~ can be brought about by an 
increase in flow speed or pore radius and/or 
decrease in electrode thickness, reactant diffusion 
coefficient or Sherwood number. It appears 
that the value of ~ = 0.1 is of particular signifi- 
cance regarding the extent of radial diffusion 
control for the conditions of Fig. 2. At ~ > 0.1, 
ill L decreases rapidly as ~ increases whereas at 

< 0.1, i/iL increases only slightly with further 
decrease in ~ becoming almost independent of 
~O at ~ < 0.03. A value of ~ = 0.1 results from 
large values of V and R and/or small values of 
D, L a n d  Sh.  These are the conditions which cause 
significant radial diffusion control, under which 
Rw(X ) ~Rm(X ). We have previously [2] derived 
the following relation between the ratio of Rw(X) 
to R m ( x  ) and the relevant variables and para- 
meters of the system: 

Rw(X ) 1 
- ( 1 6 )  

R m (x) 1 + I~  exp (m?) 

F o r / =  0.1 and ~ = 0.1, this ratio is 0.93, 
0.83 and 0.65 for a t / =  2, 3 and 4, respectively. 
While the first value indicates no radial diffusion 
effects, the second and the third correspond, 

.. i 

.2" 
t _  
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0J+ 
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0 I I , I 
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bimensioniess group $ 

Fig. 2. Effect of the dimensionless group qJ on the 
dimensionless current at I = 0.1 on various values 
of ~ / b .  

respectively, to slight and moderate radial dif- 
fusion control. At ~ = 0.03, the corresponding 
values of the ratio are greater being 0.98, 0.94 
and 0.83 while still higher values are obtained 
at ~ < 0.03 indicating that the concentration is 
rather uniform across the pore. Under these 
conditions radial diffusion has little or no effect 
on the behaviour of the electrode. Therefore, the 
concentration varies only in the axial direction 
and true one-dimensional transport prevails. 
On the other hand, as r increases (~ > 0.1), the 
concentration ratio decreases progressively causing 
a more pronounced decrease in the dimensionless 
current due to a more actute radial diffusion 
control, e.g., at ~ = 0.3 the ratio is 0.82, 0.62 
and 0.38 for a t / =  2, 3 and 4, respectively. 

Note that the above ratio depends not only on 
~, which has structural and mass transport signifi- 
cance, but also on the polarization r/, transfer 
coefficient a and reversibility index I which 
have kinetic significance. Therefore, the extent 
of radial diffusion control depends on the level 
of polarization and on the kinetic parameters 
of the electrode reaction in as much as it depends 
on the structural and transport properties of the 
electrode-electrolyte system. Thus, an electro- 
chemical reaction can be under radial diffusion 
control at high, but not at low, polarizations 
provided I and ~ have appropriate values. In the 
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light of these conclusions, the belief that radial 
diffusion can be neglected in electrodes of fine 
pores or of large thickness seems to be an under- 
estimation of the relevant factors. 

The significance of ~0 = 0.1 in Fig. 2 extends 
to optimization and design considerations. Any 
decrease in ~ below 0.1 causes only a slight 
increase in ill L at the same at/, i.e., further 
decrease in ~ is not justified. This is because 
a decrease in ~ can be achieved by increasing 
electrode thickness, decreasing flow rate or pore 
radius. These are complex options, e.g., an 
increase in electrode thickness requires more 
electrode material and a decrease in pore radius 
calls for an electrode material of a different 
structure which, in addition, requires more power 
for pumping the electrolyte through the electrode. 
A decrease in flow speed causes a decrease in the 
actual current, even though the dimensionless 
current i/iL remains constant. This is because as 
V decreases i L also decreases and, since i/iL 
remains constant i decreases. 

Figure 3 shows the effect of ~ on the current- 
polarization relations for I = 0.1. As a~2 increases 
the current increases reaching, at large ~ values, 
a limiting value i/iL < 1 dependent on ~. At 
sufficiently large $ values ($ > 0.2) radial 
diffusion controls the conversion efficiency, i.e., 
the obtainable limiting current is less than that 
given by Equation 10a. The dependence of con- 

1.0 

0.8 
/ /  

0.6 

OA. 

=o .~ 0.2 
g 
.E_ 
s 

0 I I I I 

2 ~- 6 8 10 
oc q/b 

Fig. 3. Effect of dimensionless polarization ~l/b on the 
dimensionless current ill L at I = 0.1 and various values 
of ~. 

version efficiency on ~ has been treated in detail 
before [21. 

3.2. Significant ohmic potential drop in the pore 
electrolyte 

This case is obtainable with large values of the 
ohmic effect parameter A, i.e., large values of 
reaction rates, electrolyte resistance or electrode 
thickness. Under these conditions, the polariz- 
ation varies through the electrode; varying sharply 
with distance as A increases [7, 8]. We have 
shown above that the polarization affects the 
extent of radial diffusion control (see Equation 
16). Therefore, in presence of significant ohmic 
potential drop in the pore electrolyte, the extent 
of radial diffusion control varies from one position 
to another inside the electrode. This effect is 
reflected on the current-polarization relations. 

The equations to be solved simultaneously 
for this case are 4a, 7b, 8a, and 9a. Equation 8a 
is rearranged to give Rw(x)  = [di(x)/dx] x 
[1/I exp (a*7)]. Substituting in Equation 7b, 
solving for di(x)/dx and then combining with 
Equation 9a one obtains 

1 d2r~(x)[ 1 )] 
& dx 2 1 +)-~ exp (-- arl(x) 

(17) 

There is no general analytical solution to this 
equation in its present form. However, it can 
be integrated once to give the polarization 
gradient, and hence the current, using the 
following substitution: 

&2(x)/dx = Y 

thus 

d2~?(x) _ y dy 

dx 2 dr?(x) 

Substituting in Equation 17 and rearranging, one 
obtains: 

dy 
f Y 1 - - Y / - - A  

A f exp (a~(x)) 
dil(x) 

.1 (1/I~) + exp (~(x) )  

From tabulated integrals 
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- -  A y  - -  A 2 I n  ( 1  - -  Y / A )  = 

o~-~ In + exp [oLr/(x)] + constant 

Substituting by boundary conditions 12a, b in 
the above equation, rearranging and substituting 
for y = dr/(x)/dx, one obtains 

--A dr/(X)dx 2x2 ln(1 A1 d~d-~)) 

=_AA ln[_l +/~_exp (ar~(x))] (18) 
a~ 1 + I~ exp (argo) J 

A complete solution of the problem requires 
further integration of Equation 18 to obtain the 
polarization distribution, from which the distri- 
bution of current and concentration can be calcu- 
lated. This has been done before [7] for the 
simpler case of fast electrode kinetics under con- 
ditions of one-dimensional transport. However, 
the relations of practical interest, i.e., the depen- 
dence of current-polarization relations on the 
system variables (e.g. I, A and ~) can be obtained 
from Equation 18 in its present form. Dividing 
both sides of Equation 18 by A 2 , and using 
Equation 9a, one obtains: 

- -  i ( x )  - -  i n  ( 1  - -  i ( x ) )  

= laA~ In [ 
1 _+Z~_ exp _(ca?(x))] 

1 + I ~  exp (a~7o) J 
(19) 

_ 1 {  ) 
- - i - - ln (1  - i )  = a - - ~ l n  1 +1~ exp [~r/(L)] 

(21) 
Equation 21 can be rearranged and presented 
in the form of a Tafel equation 

l_[exp-o ---/fgXT ( -  aA~i) ] z/(L) = (l /a) In I 1 -- ln(Iff) 
(22) 

Equation 22 relates the front face polarization 
~(L) to the current through the dimensionless 
variables a, A, ~ and I at relatively large A values 
such that r?(L) >> 7/0. Figures 4-6 illustrate these 
relations. The effect of the radial diffusion para- 
meter t~ on the current-polarization relations is 
shown in Fig. 4 at A = 20 which is only a 
moderately large value. At appreciable values of 
current, i.e., i/it, "~ 0.5, the increase in 
decreases the current at the same polarization. 
This is attributed to the depletion of reactant 
concentration at the pore wall, see Equation 16. 
Figure 5 shows a stronger effect of variations 
in ~ at A = 60. At i/ir., < 0.5, i.e., in the absence 
of significant concentration changes through the 
electrode, ff has no effect on the current- 
polarization relations. It is also noteworthy that 
the increase in ~ at values above ff = 0.1 has 
a more significant effect than a corresponding 
increase at values below 0.1 (refer also to Fig. 2). 
Figure 6 illustrates the effect of the ohmic effect 
parameter A on the current-polarization relations 
at a constant value of ~. The increase in A, at 

At x = 1, i(x) = i. Thus 
.t3 
"~ 30 

_ i _  ln(1 - 0 : - - L  in [l?d• ] . 

aA~ [ 1 + I~ exp (at/o) J g 
"4= 

(20) ~ 20 

Equation 20 relates i to r/o and r/(L) through 
a, A and ~. At constant values of a, A and ~ there 
is a fixed value for each of r/o and r/(L) for any _ ~ 10 

g value of i. The relation between rio and rl(L) .a 
can be obtained from the polarization distribution 
which results from integrating Equation 18. In E_ 
presence of an ohmic potential drop in the pore 
electrolyte, there is a large difference between 
r/(L) and r/o. Furthermore as A increases, ~7(L) 
increases while r~o decreases [7, 8 ]. Taking the limit 
of large A values, and assuming I~ exp (erb) < 1, 
Equation 20 reduces to 

I I I i / 

/ 

O.Oi I I I 1 

0.2 0A, 0,6 0.8 1.0 

Dimensionless currenf , i/i L 

Fig. 4. Effect of the dimensionless group q) on the 
current-polarization relations at ~, = 20 and 
I = 0.01. 
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I l I I 

0.2 0,4 0.6 0.8 1.0 

Dimensionless current ~ i / i  L 

Fig. 5. Effect of the dimensionless group qJ on the 
current-polarization relations at a = 60 and 
I = 0.01. 

the same current i/iL, increases the polarization. 
This increase in polarization is due to the ohmic 
potential drop in the pore electrolyte resulting 
from increase in current, pore electrolyte 
resistance or electrode thickness. 

A comparison of Figs. 4-6  reveals that A and 
have similar effects on the current- 

polarization relations. This is understandable 

o 

g 

E 

30 

20 

10 

I I I I 

q J= 0.1 
I= 0.01 / 

ix= 6o 20 

I , I I 

0.2 0.4 0.6 0.8 1.0 

Dimension[es~ current  t i] i L 

Fig. 6. Effect of the ohmic parameter A on the current-  
polarization relations at constant I = 0.01 and ~ = 0.1. 

as the increase in A increases the ohmic potential 
drop in the pore electrolyte whereas an increase 
in ~ decreases Rw(X ) and hence increases the 
magnitude of concentration polarization. There 
seems to be a synergistic effect of A and ~ on 
the current-polarization relations. This is borne 
out by the larger increases in r/(L) caused by 
increasing ~ at A = 60 as compared to the 
corresponding increases at A = 20. 

The effect of the reversibility index I on 
the current-polarization relations has been 
treated before [5, 8]. As I decreases, the 
current-polarization relations shift bodily to 
higher polarizations by (2.3 b/o 0 V per decade 
o f / .  

4. Significance of r Sh and 

In treating the effects of radial diffusion on the 
conversion efficiency of porous flow-through 
electrodes, the dimensionless group ~ was found 
to influence the efficiency [2]. 

0 = VR2/2 DLO 

: 2 VO/Z~LS ~ (23) 

This group combines the structural properties of 
the porous electrode (R, L, 0 and S) and the 
transport properties of the electrolyte (V and D). 
The significance of r has been discussed in detail 
before [14, 15] with reference to diffusional 
entrance effects and residence time through the 
electrode. This group is also related to the other 
hydrodynamic dimensionless group commonly 
used in mass transfer studies, namely Reynolds 
(Re), Schmidt (So) and Peclet (Pe) numbers. 
From the definitions of these groups 

r = R e S c R / L  

= PERIL 

Thus 0 increases with increase of V and R or 
decrease o lD,  L and O. These variations are 
comparable to increases in Re, Sc and Pe 
numbers. Note that whereas Re (being the 
relation between convective and viscous forces) 
determines the flow regime, i.e., whether the 
flow is laminar or turbulent, Sc is a measure of 
the viscous to diffusional effects and Pe relates 
convective to diffusional effects. 

(24) 
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The rate of mass transfer between the flowing 
liquid and the surface of the solid is expressed in 
terms of the Sherwood number Sh (referred to also 
as Nusselt number Nu); hence it is a measure of the 
speed of radial diffusion 

Sh = kd/D 

4kO 
SD (25) 

The dependence of Sh on Re and Pe cannot be 
solved analytically for porous media of irregularly 
shaped particles; similar solutions are available for 
straight tubes [13] and for carefully packed spheres 
[16]. In these cases, the Sh number decreases 
with decreasing Re  (Shcc Re 1/3) approaching 
asymptotically a limiting value at sufficiently low 
Re, in the so called 'deep bed' region, i.e., when 
the concentration profile is fully developed. For 
randomly packed beds of various packings there 
have been several empirical correlations of Sh 
t o R e  of the form [17] 

Sh = a Re B (26) 

where a and B are constants;B is less than unity 
often ranging from 0.33-0.66. Therefore the 
parameter of radial diffusion ff = 2~/Sh cc V (l-B), 
i.e., it is proportional to V (l-n).  

5. Comparison with experimental results 

The complexity of the present system is well 
illustrated by the form of Equation 20. Although 
Equation 22 is somewhat simpler than Equation 
20, the important variables a, A and ff in either 
equation cannot be easily separated. Thus for 
experimental testing of the effects of these 
variables, we used an electrochemical reaction of 
known value of o~ on a particular electrode and 
measured the effects of variations in flow speed 
(and hence in L A and 4) on the current- 
polarization relations. We now test whether the 
observed effects can be interpreted in terms of 
the resulting variations in I, A and ft. Measure- 
ments were obtained on the electrochemical 
reduction of copper ions from solutions of 
copper sulphate in 0.5 tool dm -3 H2SO4 at 
25 -+ 2 ~ C. Details of the cell, flow system, 
circuitry and experimental procedure are 
available elsewhere [15]. The packed bed 

electrode was made of small copper wirelets. It 
had the following specifications: cross sectional 
area, 3.14 cm2; length, 2.1 cm; 0,0.47;  S, 
177 cm -a ; R, 53/am and Peu, 20.1 g2 cm. 

Figure 7 shows the effect of flow speed on 
the current-polarization relations for the 
reduction of 0.001 mol dm -3 Cu 2§ The values of 
A are indicated on the figure. Note that the 
front (exit) face polarization r/(L) increases with 
V whereas the rear (entrance) face polarization 
r/o has essentially the same low value for the 
four runs regardless of the value of V. Note also 
that an increase in V results in an increase in 
both A (Acc V) and ff (see under significance of 
O, Sh and 4) and a decrease in I (I ~x l/V). Thus 
the effect of flow speed observed in Fig. 7 is 
the sum of the above variations in I,  A and t). 
These effects are in the direction predicted by 
the model, i.e., r/(L) increases with increase in 
A and ff or with decrease in I. 

A more quantitative test of the validity of 
the present model can be achieved by applying 
Equation 22 to the experimental results of 
Fig. 7 (where r/(L) >~ r/o). If  the above model 
simulates the behaviour of the system, then a 
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Fig. 7. Effect of electrolyte flow speed on the measured 
current-polarization relation at large A values (see 
text). 
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plot of the dimensional polarization [rl(L)/b] 
versus the first logarithmic term on the rhs 
of Equation 22 should give a straight line with 
a slope of ( I /a )  and an intercept of ln(I~). 
Note that A and ~b exist also in the first term. 
From the intercept of the plot one can calculate 
I and hence io. The value of a calculated from 
the slope must be equal to that used in the 
calculation. The calculation o f / a n d  A is direct 
and simple; the only difficulty is in calculating 
Sh and hence ~ (cf., significance of q~, Sh and 
~). In calculating Sh for a packed bed, use is 
often made of Equation 26. However, the values 
of a and B vary widely [ 17] depending on the 
system and type of flow. In fact different values 
have been reported for similar systems, under 
comparable flow conditions [ 17]. 

Note that the transfer coefficient is known 
rather accurately (a = 0.5) and the parameter 
of ohmic effect A is calculated from iL and 
Pe~ which can also be measured accurately. The 
only uncertainty is in calculating Sh and hence 
~. Therefore ~ is regarded as an optimization 
parameter, the proper value of which satisfies 
Equation 22. We have tested this equation 
with some experimental results (cf., Fig. 8) 
using different values of Sh. In each case a 
straight line was obtained; the slope (and hence a) 
and the intercept of which being dependent 
on the particular value of Sh. It was found that an 
increase in ff (decrease in Sh), at fixed values of 
aA, results in a decrease of the slope, i.e., in an 
increase in a. Fig. 8 shows plots of the experi- 
mentally measured polarization (converted to 
dimensionless) rl(L)/b versus the first logarithmic 
term on the right-hand-side of Equation 22 for 
two runs I and II. The measured and calculated 
values for runs, I and II, are respectively: D, 
7.5 x 10 -6 cm ~ s-* [2]; V, 0.11,0.086 cm 
s -~ ; i L, 20.0 16.7 mA cm-2; A, 33.0, 27.5; 
a, 0.5; 4), 0.208, 0.163; Re, 0.062, 0.049; Pe, 
82.8,64.8;Sh, 7.49,6.96 and if, 0.101 and 0.085 
(corresponding to Sh = 4.12 and 3.84, respec- 
tively). It is noteworthy that these Sh values are 
only slightly greater than the asymptotic limiting 
value of 3.66 which was obtained analytically 
for laminar (Poiseuille) flow in tubes [13]; 
the value for turbulent (plug) flow being 5.78. 
The present results are well in the region of 
laminar flow (Re = 0.062 and 0.049) since the 
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Fig. 8. Plot of the experimental results according to 
Equation 22 (see text). 

onset of turbulent flow in porous media starts 
atRe = 1-10 [18]. The results of the two runs 
fit one satisfactory straight line over a wide range 
of polarizations with a slope of 1.86 which 
corresponds to a value of ~ - 0.54. This value is 
in good agreement with the value of 0.50 which 
was used in calculating the rhs of Equation 22. The 
intercept gives a value of I~  = 0.03 from which 
the reversibility index I = 0.297 and 0.353, 
respectively. The exchange current density of the 
reaction, io, calculated from these values is 
1.6 x 10 -s A cm -2 corresponding to a value of 
0.016 A cm -2 tool -~ , which is comparable to 
the values reported by Hurlin [19]. Similar 
results were obtained at values of A = 19.0 and 
13.8 (see Fig. 7). This good agreement between the 
predictions of the model and the behaviour of the 
system is taken as a support of  the validity of 
this model with its assumptions and solutions. 



E F F E C T  OF RADIAL DIFFUSION ON POROUS FLOW-THROUGH ELECTRODES 427 

References 

[ 1 ] J. Newman and W. Tiedman, 'Advances in 
Electrochemistry and Electrochemical 
Engineering', VoL 11, (edited by H. 
Gerischer and C. Tobias), Wiley, New York 
(1978) p. 352. 

[2] B.G. Ateya, J. Appl. Electrochem. 19 (1980) 
627. 

[3] R.M. Perskaya and I. A. Zaidenman, Proc. 
Acad. Sci. USSR Phys. Chem. Soc. 115 (1957) 
513. 

[4] I.G. Gurevich and U. S. Bagotsky, Electrochim. 
Acta 9 (1964) 1151. 

[5] L.G. Austin, P. Palasi and R. Klimpel, 'Advances 
in Chemistry Series', No. 47, The American 
Chemical Society (1965) p. 35. 

[6] H.S. Wroblowa, J. Electroanal. Chem. 42 (1973) 
321. 

[7] B.G. Ateya and L. G. Austin, J. Electrochem. Soe. 
124 (1977) 83. 

[8] Idem, ibid. 124 (1977) 1540. 

[9] D.N. Bennion and J. Newman, aT. Appl. 
Electrochem. 2 (1972) 13. 

[10] R. Alkixe and B. Gracon, J. Electrochem. Soc. 
122 (1975) 1594. 

[ 11] R.S. Wenger and D. N. Benninn, J. AppL 
Electrochem. 6 (1976) 385. 

[12] J.A. Trainharn and J. Newman, ibid. 7 (1977) 
287. 

[ 13] H.H.P. Skelland, 'Diffusional Mass Transfer', 
Wiley, New York (1974). 

[14] B.G. Ateya, J. EIeetroanal. Chem. 76 (1977) 193. 
[15] B.G. Ateya, E. Arafat and S. Kafafi, J. AppL 

Electrochem. 7 (1977) 107. 
[ 16] J.P. S6rensen and W. Stewart, Chem. Engng. 

Sci. 29 (1974) 827. 
[17] I. Colquhoun and J. Stepanek, Chem. Eng. 

(London) 282 (1974) 108. 
[ 18] M. Muskat, 'Physical Principles of Oil Produc- 

tion', McGraw-Hill, New York, 1st edn. 
(1949) p. 126. 

[19] T. Hurlin, Acta Chim. Scan& 15 (1961) 630. 


